For the following exercises, perform the given operations.
( 5 − 3 ⋅ 2 ) 2 − 6 ( 5 − 3 ⋅ 2 ) 2 − 6
64 ÷ ( 2 ⋅ 8 ) + 14 ÷ 7 64 ÷ ( 2 ⋅ 8 ) + 14 ÷ 7
2 ⋅ 5 2 + 6 ÷ 2 2 ⋅ 5 2 + 6 ÷ 2
For the following exercises, solve the equation.
5 x + 9 = −11 5 x + 9 = −11
2 y + 4 2 = 64 2 y + 4 2 = 64
For the following exercises, simplify the expression.
9 ( y + 2 ) ÷ 3 ⋅ 2 + 1 9 ( y + 2 ) ÷ 3 ⋅ 2 + 1
3 m ( 4 + 7 ) − m 3 m ( 4 + 7 ) − m
For the following exercises, identify the number as rational, irrational, whole, or natural. Choose the most descriptive answer.
For the following exercises, simplify the expression.
2 2 ⋅ 2 4 2 2 ⋅ 2 4
4 5 4 3 4 5 4 3
( a 2 b 3 ) 4 ( a 2 b 3 ) 4
6 a 2 ⋅ a 0 2 a −4 6 a 2 ⋅ a 0 2 a −4
( x y ) 4 y 3 ⋅ 2 x 5 ( x y ) 4 y 3 ⋅ 2 x 5
4 −2 x 3 y −3 2 x 0 4 −2 x 3 y −3 2 x 0
( 2 x 2 y ) −2 ( 2 x 2 y ) −2
( 16 a 3 b 2 ) ( 4 a b −1 ) −2 ( 16 a 3 b 2 ) ( 4 a b −1 ) −2
Write the number in standard notation: 2.1314 × 10 −6 2.1314 × 10 −6
Write the number in scientific notation: 16,340,000
For the following exercises, find the principal square root.
49 1250 49 1250
4 3 + 6 3 4 3 + 6 3
12 5 − 13 5 12 5 − 13 5
250 3 −8 3 250 3 −8 3
For the following exercises, perform the given operations and simplify.
( 3 x 3 + 2 x − 1 ) + ( 4 x 2 − 2 x + 7 ) ( 3 x 3 + 2 x − 1 ) + ( 4 x 2 − 2 x + 7 )
( 2 y + 1 ) − ( 2 y 2 − 2 y − 5 ) ( 2 y + 1 ) − ( 2 y 2 − 2 y − 5 )
( 2 x 2 + 3 x − 6 ) + ( 3 x 2 − 4 x + 9 ) ( 2 x 2 + 3 x − 6 ) + ( 3 x 2 − 4 x + 9 )
( 6 a 2 + 3 a + 10 ) − ( 6 a 2 −3 a + 5 ) ( 6 a 2 + 3 a + 10 ) − ( 6 a 2 −3 a + 5 )
( k + 3 ) ( k − 6 ) ( k + 3 ) ( k − 6 )
( 2 h + 1 ) ( 3 h − 2 ) ( 2 h + 1 ) ( 3 h − 2 )
( x + 1 ) ( x 2 + 1 ) ( x + 1 ) ( x 2 + 1 )
( m − 2 ) ( m 2 + 2 m − 3 ) ( m − 2 ) ( m 2 + 2 m − 3 )
( a + 2 b ) ( 3 a − b ) ( a + 2 b ) ( 3 a − b )
( x + y ) ( x − y ) ( x + y ) ( x − y )
For the following exercises, find the greatest common factor.
81 p + 9 p q − 27 p 2 q 2 81 p + 9 p q − 27 p 2 q 2
12 x 2 y + 4 x y 2 −18 x y 12 x 2 y + 4 x y 2 −18 x y
88 a 3 b + 4 a 2 b − 144 a 2 88 a 3 b + 4 a 2 b − 144 a 2
For the following exercises, factor the polynomial.
2 x 2 − 9 x − 18 2 x 2 − 9 x − 18
8 a 2 + 30 a − 27 8 a 2 + 30 a − 27
d 2 − 5 d − 66 d 2 − 5 d − 66
x 2 + 10 x + 25 x 2 + 10 x + 25
y 2 − 6 y + 9 y 2 − 6 y + 9
4 h 2 − 12 h k + 9 k 2 4 h 2 − 12 h k + 9 k 2
361 x 2 − 121 361 x 2 − 121
p 3 + 216 p 3 + 216
8 x 3 − 125 8 x 3 − 125
64 q 3 − 27 p 3 64 q 3 − 27 p 3
4 x ( x − 1 ) − 1 4 + 3 ( x − 1 ) 3 4 4 x ( x − 1 ) − 1 4 + 3 ( x − 1 ) 3 4
3 p ( p + 3 ) 1 3 −8 ( p + 3 ) 4 3 3 p ( p + 3 ) 1 3 −8 ( p + 3 ) 4 3
4 r ( 2 r − 1 ) − 2 3 − 5 ( 2 r − 1 ) 1 3 4 r ( 2 r − 1 ) − 2 3 − 5 ( 2 r − 1 ) 1 3
For the following exercises, simplify the expression.
x 2 − x − 12 x 2 − 8 x + 16 x 2 − x − 12 x 2 − 8 x + 16
4 y 2 − 25 4 y 2 − 20 y + 25 4 y 2 − 25 4 y 2 − 20 y + 25
2 a 2 − a − 3 2 a 2 − 6 a − 8 ⋅ 5 a 2 − 19 a − 4 10 a 2 − 13 a − 3 2 a 2 − a − 3 2 a 2 − 6 a − 8 ⋅ 5 a 2 − 19 a − 4 10 a 2 − 13 a − 3
d − 4 d 2 − 9 ⋅ d − 3 d 2 − 16 d − 4 d 2 − 9 ⋅ d − 3 d 2 − 16
m 2 + 5 m + 6 2 m 2 − 5 m − 3 ÷ 2 m 2 + 3 m − 9 4 m 2 − 4 m − 3 m 2 + 5 m + 6 2 m 2 − 5 m − 3 ÷ 2 m 2 + 3 m − 9 4 m 2 − 4 m − 3
4 d 2 − 7 d − 2 6 d 2 − 17 d + 10 ÷ 8 d 2 + 6 d + 1 6 d 2 + 7 d − 10 4 d 2 − 7 d − 2 6 d 2 − 17 d + 10 ÷ 8 d 2 + 6 d + 1 6 d 2 + 7 d − 10
10 x + 6 y 10 x + 6 y
12 a 2 + 2 a + 1 − 3 a 2 −1 12 a 2 + 2 a + 1 − 3 a 2 −1
1 d + 2 c 6 c + 12 d d c 1 d + 2 c 6 c + 12 d d c
3 x − 7 y 2 x 3 x − 7 y 2 x
This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.
Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.
Access for free at https://openstax.org/books/college-algebra/pages/1-introduction-to-prerequisites
Access for free at https://openstax.org/books/college-algebra/pages/1-introduction-to-prerequisites
© Dec 8, 2021 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.
OpenStax is part of Rice University, which is a 501(c)(3) nonprofit. Give today and help us reach more students.